Friday, July 20, 2012

Geotermalni izvori - gdje je zapelo ?!

 Geotermalni izvori


Geotermalni izvori

U Hrvatskoj postoji tradicija iskorištavanja geotermalne energije iz prirodnih izvora u medicinske svrhe i za kupanje. Brojne toplice koriste upravo geotermalnu energiju (Varaždinske Toplice, Daruvarske Toplice, Stubičke Toplice, Lipik, Topusko itd.). Proizvodnja geotermalne vode za navedene toplice prije se vršila kroz prirodne izvore, dok se danas uz prirodni protok koristi geotermalna voda iz plitkih bušotina. Ukupno postoji 28 nalazišta, od kojih je 18 u upotrebi.

INA-Naftaplin je 1970-ih godina započela s istraživanjem rezervi nafte i plina na poljima u kontinentalnom dijelu Hrvatske. Istražne bušotine pokazale su postojanje izvora tople vode. Najviše istražena ležišta, a ujedno i ležišta s najvišom temperaturom geotermalnog fluida su ležište u blizini Koprivnice (Kutnjak-Lunjkovec) i Bjelovara (velika Ciglena).

40 godina kasnije nezamisliv i neoprostiv zastoj.

Zašto?

1998. godine Energetski institut “Hrvoje Požar” je pripremio program korištenja geotermalne energije u Hrvatskoj, koji pokazuje da Hrvatska ima nekoliko srednjetemperaturih geotermalnih izvora s relativno niskim temperaturama geotermalne vode u rasponu od 100 do 140°C, pomoću kojih je moguća proizvodnja električne energije, npr. Lunjkovec (125°C), Ferdinandovac (125°C), Babina Greda (125°C) i Rečica (120°C). No, konkretne inicijative za gradnju geotermalnih elektrana pokrenute su tek posljednjih godina. Za proizvodnju električne energije iz srednjetemperaturnih geotermalnih izvora dolaze u obzir elektrane s binarnim ciklusom, bilo s organskim Rankineovim ciklusom (ORC) ili Kalina ciklusom. 

U literaturi se Kalina ciklus navodi kao termodinamički povoljniji ciklus od ORC, tj. koji postiže veću termodinamičku iskoristivost i daje više snage. S druge strane, spoznaje autora objavljene u prethodnim radovima, a predstavljene i na 3. međunarodnom forumu o obnovljivim izvorima energije ovdje u Dubrovniku, dobivene na temelju proračuna za srednjetemperaturni geotermalni izvor u Hrvatskoj (Velika Ciglena) s relativno visokom temperaturom geotermalne vode (175°C) pokazuju suprotno. ORC je termodinamički bolji od Kalina ciklusa. To se objašnjava relativno visokom temperaturom geotermalne vode kao i relativno visokom prosječnom godišnjom temperaturom zraka za hlađenje u kondenzatoru (15°C), koja ima nepovoljniji utjecaj kod Kalina ciklusa nego kod ORC-a. U ovom će se radu usporedba ORC i Kalina ciklusa provesti za srednjetemperaturno geotermalno polje s relativno niskom temperaturom geotermalne vode (125°C) i ponovo uz relativno visoku prosječnu godišnju temperaturu zraka za hlađenje u kondenzatoru (15°C): konkretno za geotermalno polje Lunjkovec. Usporedba ORC i Kalina ciklusa će se provesti na temelju rezultata energetske i eksergetske analize.

 Konačni cilj usporedbe je predložiti povoljnije binarno postrojenje, bilo s ORC ili Kalina ciklusom, za srednjetemperaturne geotermalne izvore u Hrvatskoj s relativno niskim temperaturama geotermalne vode.

14  godina kasnije nezamisliv i neoprostiv zastoj.


Zašto?

Geotermalna energija je toplinska energija koja se stvara u Zemljinoj kori polaganim raspadanjem radioaktivnih elemenata, kemijskim reakcijama, kristalizacijom i skrućivanjem rastopljenih materijala ili trenjem pri kretanju tektonskih masa. Količina takve energije je tako velika da se može smatrati skoro neiscrpnom.
Iskorištavanje geotermalne energije podrazumijeva iskorištavanje energije nagomilane u unutrašnjosti Zemlje u obliku vruće vode i pare ili u suhim stijenama. Pri tome je bitna razlika temperatura između površine i unutrašnjosti Zemlje. Temperaturni gradijent, odnosno povećanje temperature po kilometru dubine, najveći je neposredno uz površinu, a s povećanjem udaljenosti od površine postaje sve manji.
Za praktično iskorištavanje geotermalne energije potrebno je iskoristiti prirodno strujanje vode ili stvoriti uvjete za takvo strujanje. Osnovno načelo je da se voda dovodi s površine Zemlje u dublje slojeve, u njima se ugrije preuzimajući toplinu nagomilanu u Zemljinoj unutrašnjosti i tako ugrijana ponovno pojavljuje na površini.
U većim dubinama Zemljine kore nalaze se velike mase suhih stijena koje sadrže znatne količine energije. Voda s površine ne može prodrijeti u te stijene prirodnim putem. Da bi se ta energija iskoristila, potrebno je duboko ispod površine razdrobiti suho stijenje kako bi se dobila dovoljno velika površina za prelazak topline sa stijena na vodu. Pritom bi se voda s površine dovodila među raspucalo stijenje umjetno stvorenom bušotinom, a ugrijana voda odvodila drugom bušotinom na površinu. Još uvijek nije tehnološki razrađeno komercijalno isplativo iskorištavanje energije suhih stijena, niti vruće vode koja se nalazi u vrlo velikim dubinama.
Danas se geotermalna energija koristi u mnogim zemljama u sljedeće svrhe:
  • za potrebe liječenja i rekreacije,
  • za potrebe grijanja i tople vode,
  • za proizvodnju električne energije,
  • za potrebe poljoprivrede (primjerice. zagrijavanje staklenika, ribnjaka, zemljišta),
  • za potrebe industrije.

Hrvatski geološki institut


Croatian Geological Survey


Hrvatski geološki institut najveći je istraživački institut u području geoznanosti i geološkog inženjerstva u Republici Hrvatskoj. Geološki podaci predstavljaju temelj za rješavanje mnogih projekata od nacionalnog značaja kao što su opskrba pitkom vodom, zaštita voda i tala, izgradnja prometne infrastrukture, urbanističko planiranje, definiranje rezervi mineralnih sirovina i zaštite okoliša.
U istraživanjima se koriste najsuvremenije metodologije kao i informacijske i računalne thgiehnologije. U institutu je aktivno 66 znanstvenika i istraživača i 12 znanstvenih novaka na realizaciji Programa temeljne djelatnosti (Geološke karte), pitanjima zaštite okoliša, istraživanju podzemnih voda, inženjerskogeoloških karakteristika terena te istraživanju mineralnih sirovina.
Hrvatski geološki institut surađuje s mnogim srodnim institucijama, organizacijama i fakultetima u zemlji, a kao takav prepoznat je i u međunarodnoj akademskoj zajednici o čemu svjedoče mnogi međunarodni istraživački projekti koji se izvode u Institutu.

 

 

Energetski potencijal u Republici Hrvatskoj

Geotermalni gradijent

Dva sedimentna bazena pokrivaju gotovo cijelo područje Republike Hrvatske: Panonski bazen i Dinaridi. Velike su razlike u geotermalnim potencijalima koji su istraženi istražnim radovima u svrhu pronalaska nafte i plina.
U Dinaridima prosječni geotermalni gradijent i toplinski tijek iznosi:
G=0,018 °C/m
q=29 mW/m2


Na ovom području se ne mogu očekivati otkrića značajnijih geotermalnih ležišta. Moguća su otkrića voda sa temperaturama na površini prikladnim za rekreativne i balneološke namjene. Vode takvih karakteristika su otkrivene u Istarskim Toplicama, Splitu, Omišu, Sinju i Dubrovniku.
Za razliku od Dinarida, koji nemaju značajnih geotermalnih potencijala u Panonskom bazenu prosječni geotermalni gradijent i toplinski tijek su mnogo viši:
G=0,049 °C/m
q=76 mW/m2

Budući da je geotermalni gradijent na panonskom području znatno veći od europskog prosjeka na ovom području se može očekivati, pored već otkrivenih geotermalnih ležišta, pronalaženje novih geotermalnih ležišta.

Geotermalni potencijal

Ukupni toplinski geotermalni energetski potencijal iz sve tri skupine iznosi MWt:
do 50°C do 25°C
Iz već izrađenih bušotina:
203,47 319,21
Uz potpunu razradu ležišta:
839,14 1169,97
Geotermalne potencijale u Hrvatskoj možemo podijeliti u tri skupine – srednje temperaturne rezervoare 100 – 200 °C, niskotempraturne rezervoare 65 do 100°C i geotermalne izvore temperature vode ispod 65 °C.

Srednjetemperaturni geotermalni potencijali

Geotermalna energija iz ovih ležišta može se iskorištavati za grijanje prostora, u različitim tehnološkim procesima te za proizvodnju električne energije binarnim procesom.
Područje
Bjelovar
Bjelovar
Ludbreg
Đurđevac
Karlovac
Županja
Lokacija (ležište)
Velika
Ciglena
Velika
Ciglena
Lunjkovec
Ferdinan-
dovac
Rečica
Babina
Greda

Kategorija rezervi
Dokazane
Vjerojatne
Vjerojatne
Vjerojatne
Vjerojatne
Vjerojatne


Dokazane




Dubina bušotina,  m
2800
2800
2500
2500
2500
2500
Način pridobivanja vode
samoizljev
samoizljev
samoizljev
samoizljev
crpka
samoizljev
Izdašnost elementa razrade,  m3/s
0,11566
0,347
0,156
0,1
0,1
0,2
Temperatura vode, °C
170
170
125
125
120
125
Broj bušotina na elementu; (proizvodne + utisne)
2 (1+1)
5 (3+2)
3 (2+1)
3 (2+1)
3 (2+1)
2 (1+1)
Mogući broj elemenata razrade
1
1
10
1
1
1
Broj izrađenih/aktivnih bušotina
2/0
2/0
3/0
1/0
1/0
1/0
Tablica 1. Ležišta s geotermalnom vodom toplijom od 100°C
Ukupna toplinska snaga geoterlmalne energije iz ovih ležišta iznosila bi MWt:
do 50°C do 25°C
Iz već izrađenih bušotina:
168,74 218,07
Uz potpunu razradu ležišta:
755,79 986,64
Moguća snaga proizvedene električne energije iz ovih ležišta iznosila bi (capacity factor 0,9):
Iz već izrađenih bušotina:
10,95 MWe
Uz potpunu razradu ležišta:
47,88 MWe
Neki važniji pokazatelji značajnijih polja:
Lunjkovac – Kutnjak
Na polju Lunjkovec-Kutnjak, geotermalno ležište je ispitano s dvije istražne (naftne) bušotine. Geotermalna voda sadrži 5 g/l otopljenih minerala i 3 m3/m3 plina (85 % CO2, oko 15 % ugljikovodika i tragove H2S). Kamenac se počinje taložiti pri uvjetima tlaka nižeg od 10 bar. Ležišna stijena je karbonatna breča s prosječnom poroznošću od 7,5 %. Procijenjeni volumen pora je oko 109 m3, a područje ležišta oko 100 km2. Temperatura ležišta varira u ovisnosti o dubini vrha ležišta. U nepropusnim stijenama, između ležišta i površine temperaturni gradijent je viši od 0,06 °C/m.
Izdašnost bušotina je 58 l/s s temperaturom od 120 do 130 °C. Na ovom ležištu moguće je pretvoriti geotermalnu energiju u električnu pomoću binarnog ciklusa.

Velika Ciglena
Na dubini od 2500 m u vrlo propusnim stijenama otkrivena je 1990. godine termalna voda visoke temperature (172 °C). Temperaturni gradijent iznosi 0,062 °C/m. Geotermalna voda sadrži 24 g/l otopljenih minerala, 30 m3/m3 CO2 i 59 ppm H2S. Kamenac se počinje taložiti pri uvjetima tlaka nižeg od 20 bar. Iz dvije postojeće bušotine moguće je proizvoditi 115 l/s geotermalne vode.




Niskotemperaturni geotermalni potencijali

Geotermalna energija iz ovih ležišta može se iskorištavati za grijanje prostora te u različitim tehnološkim procesima. U ovom pregledu izneseni su podaci o geotermalnim ležištima i bušotinama s temperaturom vode većom od 65 °C i značajnijim izdašnostima. U tablici 2 izneseni su osnovni tehnički i energetski pokazatelji ovih ležišta. Iz geotermalnih ležišta koja su označena kosim slovima proizvodi se geotermalna voda i iskorištava u energetske svrhe za grijanje prostora, tople sanitarne vode te za rekreaciju.
Ukupna toplinska snaga geotermalne energije iz ovih ležišta iznosila bi (računano do 50°C):
Ukupna toplinska snaga geoterlmalne energije iz ovih ležišta iznosila bi MWt:
do 50°C do 25°C
Iz već izrađenih bušotina:
25,81
47,67
Uz potpunu razradu ležišta:
74,42
129,86

Područje
Zagreb
Valpovo
Osijek
Samobor
Lokacija (ležište)
Mladost
Sveuč.bolnica
Bizovac -TG
Bizovac -PP
Madrinci
Ernesti -novo
SvetaNedelja
Kategorija rezervi
Dokazane
Dokazane
Dokazane
Dokazane
Vjerojatne
Vjerojatne
Vjerojatne



Vjerojatne



Dubina bušotina,  m
1300
1300
1800
1800
1900
1700
1400
Način pridobivanja vode
samoizljev
samoizljev
samoizljev
crpka
samoizljev
crpka
samoizljev
Izdašnost elementa razrade,  m3/s
0,05
0,055
0,003
0,046
0,01
0,046
0,09
Temperatura vode,  °C
80
80
96
90
96
80
68
Broj bušotina na elementu; (proizvodne + utisne)
3 (1+2)
4 (2+2)
2 (1+1)
3 (2+1)
2 (1+1)
3 (2+1)
3 (2+1)
Mogući broj elemenata razrade
1
1
1
6
1
1
1
Broj izrađenih/aktivnih bušotina
3/3
4/1
2/2
1/1
1/0
1/0
1/0
Tablica 2. Ležišta s geotermalnom vodom temperature manje od 100°C
Neki važniji pokazatelji značajnijih polja:

Bizovac
Geotermalna voda se proizvodi iz dva rezervara Biz-gnajs i Biz-pješčenjak i sadrži određene količine otopljenih minerala i ugljikovodičnih plinova. Voda se koristi za grijanje hotela i bazenske vode, a plin u hotelskoj kuhinji. Do sada se otpadna voda ispuštala u lokalne vodotoke, a projekt separacije i reinjekcije otpadnih voda je u pripremi. Voda će se utiskivati u rezervar Biz-gnajs u kojem se ležišni tlak (30 bara iznad hidrostatskog) smanjuje velikom brzinom. Ležišni tlak u rezervaru Biz-pješčenjak smanjuje se vrlo sporo. Taloženje kamenca se pojavilo u gornjem dijelu proizvodnog niza i u površinskim instalacijama. Protiv njih se uspješno primjenjuju inhibitori.

Zagreb
U Zagrebu je naftnom istražnom bušotinom pronađen velik vapnenački vodonosnik, ali njegova propusnost u največem dijelu nije dovoljna za proizvodnju geotermalne vode.
Dio ležišta s dva područja visoke propusnosti nalazi se u jugozapadnom dijelu grada: Blato i Mladost. Na području Blato nalazi se Sveučilišna bolnica, koja je još u izgradnji. Planirana toplinska snaga bušotina na području Blato je 7 MWt, koja će uz korištenje toplinskih pumpi biti veća.
Na Mladosti se nalazi nekoliko većih objekata, koji sve svoje toplinske potrebe zadovoljavaju iz geotermalnih bušotina. Nema tehničkih problema pri eksploataciji navedenog ležišta. Geotermalna voda protječe u zatvorenom sustavu cjevovoda i utiskuje se u utisnu bušotinu, bez otpadnih nusproizvoda i dodira sa zrakom. Instalirana termalna snaga na Mladosti je 6,3 MWt (direktno korištenje).

Geotermalni izvori temperature manje od 65°C

U ovu skupinu izvora pripadaju geotermalni izvori koji se koriste za balneološke i rekreativne svrhe u većem broju toplica i rekreacionih kompleksa. To su izvori Daruvar (Daruvarske Toplice), Ivanić Grad (bolnica Naftalan), Krapinske Toplice, Lipik (Lipičke toplice), Livade (Istarske toplice), Samobor (Šmidhen SRC), Stubičke Toplice, Sveta Jana (Sveta Jana RC), Topusko (toplice Topusko), Tuhelj (Tuheljske toplice), Varaždinske Toplice, Velika (Toplice RC), Zagreb (INA-Consulting), Zelina (Zelina RC), Zlatar (Sutinske toplice).
Ukupna toplinska snaga geoterlmalne energije iz ovih ležišta iznosila bi MWt:
do 50°C do 25°C
Iz već izrađenih bušotina:
8,92
53,47
Uz potpunu razradu ležišta:
8,92
53,47 
Hrvatski Centar Obnovljivih Izvora Energije (HCOIE)

10 comments:

  1. Geothermal energy taps the heat from beneath the earth's surface to generate electricity. Existing reservoirs of steam or hot water are brought to the surface to power electrical generators throughout the Croatia. In the future, the intense heat deep below the surface will accessed for electricity generation by the advanced engineering of reservoirs all across the country.

    In addition to electricity production, lower temperature geothermal resources are used for direct heating applications and the constant temperature that exists at shallow depths can be used as an energy-efficient method of heating and cooling, called ground-source heat pumps. Croatian Center of Renewable Energy Sources (CCRES)

    ReplyDelete
  2. Geothermal World Report

    The Geothermal Report contains a global assessment of geothermal energy developments and deployments. 2010 appeared to be a weak year for geothermal with few projects commissioned and only in existing markets. However, this is not indicative of the state of the sector as a whole. As more money was invested in geothermal last year than the previous year. Several projects are now in the advanced stages of development, e.g. in the US alone there is 722 MW of project in phase 3 and 4, and support for the sector is strong. Specifically, Japan and Indonesia are relaxing rules on developing geothermal projects on protected land, which should open up more sites for development. Over the next five years high growth markets for the sector are expected to continue to be the top six main markets, Kenya, Iceland, Mexico and South America. For the latter, developers have already been awarded concessions to explore new sites in Argentina, Colombia, Chile and Peru. In the middle of 2010 the Chilean government announced plans to invest up to USD 200 million in geothermal projects and will grant over 170 geothermal concessions over the next two years, which should result in the country installing its first generation plant in the mid-term. Kenya and Mexico and the other six major markets are likely to commission projects in the advanced stages of development.

    Scope

    Over the next five years high growth markets for the sector are expected to continue to be the top six main markets, Kenya, Iceland, Mexico and South America. For the latter, developers have already been awarded concessions to explore new sites in Argentina, Colombia, Chile and Peru. In the middle of 2010 the Chilean government announced plans to invest up to USD 200 million in geothermal projects and will grant over 170 geothermal concessions over the next two years, which should result in the country installing its first generation plant in the mid-term. Kenya and Mexico and the other six major markets are likely to commission projects in the advanced stages of development. As part of a strategy to raise revenue Iceland is considering exporting electricity to other countries. A feasibility study is being undertaken to build a sub-sea electric cable linking Iceland to Europe to sell electricity generated from geothermal projects to Britain, Norway, Holland and Germany. Another potential growth market is Japan. The country's geothermal power plants were largely unaffected by the recent earthquake and tsunami unlike the Fukushima nuclear power plant. As both provide base load electricity and Japan has a good geothermal re-source. Australia is also developing geothermal projects, and has several EGS and Hot Sedimentary Aquifer (HSA) projects in the pipeline. Cost is still a major barrier to the development of projects and access to finance for the exploratory stages is still a challenge.

    ReplyDelete
  3. Per definition, geothermal energy is the energy stored in the form of heat below the earth’s surface. It has been used since ancient times for heating, and for about 100 years also for electricity generation. Its potential is inexhaustible in human terms, comparable to that of the sun. Beside electric power generation, geothermal energy is today used for district heating, as well as for the heating (and cooling) of individual buildings, including offices, shops, small residential houses, etc.

    Geothermal-generated electricity was first produced at Larderello, Italy, in 1904. Iceland, Italy, Turkey and France are the leading countries in Europe today.

    The largest geothermal district heating systems within Europe can be found in the Paris area in France, with Austria, Germany, Hungary, Italy, Poland, Slovakia and others showing a substantial number of interesting geothermal district heating systems. Sweden, Switzerland, Germany and Austria are the leading countries in terms of market for geothermal heat pumps in Europe.
    Geothermal Power

    Today, geothermal power plants exist on every continent, at any place were reservoirs of steam or hot water can be found. There are, with conventional technology, ca. 1000 MW of electric power installed in the EU, around the clock. The relevant resources are far from being fully developed, also in Europe. The concept of Enhanced Geothermal Systems (including the classical Hot-Dry-Rock-idea) is going to tremendously increase the potential.
    Deep and directly

    The earth is full of energy: virtually any temperature level in the underground can be used directly, for instance with deep boreholes. Did you know that through deep boreholes almost 4500 MWth are already installed in Europe? 4500 MWth for a clean environment. However, once again, this is only a small fraction of the resources that could be exploited.

    ReplyDelete
  4. The Shallow Geothermal Family

    Virtually every temperature level in the underground can be used for geothermal energy, even if this means only ca. 3-15°C, as is the norm in the shallow underground of European climate. In most cases a heat pump is required here, and cooling can be supplied as well as heating.
    Geothermal Energy: A Local Answer, Ecological and Efficient, to Reduce Energy Costs

    A Renewable Energy:

    an energy resource nearly infinite, delivering heat and power 24 hours a day throughout the year, and available all over the world
    energy supply by making use of the immense internal heat of the earth, and of the large thermal storage capacity of the ground
    friendly for the environment: contribution to the reduction of CO2
    very low visual impact - most of the infrastructure can be hidden beneath the ground

    A Safe and Controlled Technology:

    not depending on climatic conditions
    proven and controlled technically: design, drillings,
    components (power plants, district heating, heat pumps)
    excellent feedback from leading countries

    An Energy Adaptable with High Performance:

    an answer to different energy needs: electric power, heating, cooling, hot water
    modulated according to type of resource, to size and nature of equipments, and in order to meet demands
    for the heating sector: adaptable to old or new buildings, large or small, individual or district heating

    An Economically Sustainable Energy:



    large reduction of energy invoice
    long-term durability of installations

    not sensitive to conventional energy prices - the earth will not send an invoice!

    ReplyDelete
  5. 100% RENEWABLE
    Geothermal power is based on heat energy stored underneath the ground. This intense heat is trapped in enormous quantities inside water reservoirs in the earth’s crust. In fact, it is considered essentially limitless.

    The superheated aquifers tapped for geothermal production are continually replenished by geologic forces originating in the core of the planet. These inexhaustible natural processes make geothermal energy an eminently renewable resource.

    CLEAN-BURNING AND LOW-EMISSION
    Geothermal energy is considered clean because it can be extracted and converted without burning any fossil fuels. The ‘emissions’ from a geothermal plant are mainly benign water vapors.

    For evidence, we can look to Iceland whose capital Reykjavik—where 95 percent of buildings are geothermally heated—is considered one of the world’s cleanest cities.

    HIGH ENERGY POTENTIAL
    Oil and other ‘fossil’ fuels are just that—finite fossils that took a long time to form millions of years ago. As a result, there is only so much valuable oil we can extract from identified reserves. At some point, it could simply become cost-ineffective to drill for what’s left of the world’s petroleum—not to mention prohibitively destructive of the global climate.

    Geothermal resources have astonishing energy potential by comparison, estimated at 2 terawatts globally—about 15,000 times more than estimated worldwide oil reserves.

    SCALABLE PRODUCTION
    Some level of geothermal energy is available in most places. There is potential for geothermal development throughout the United States, and the process is highly scalable.

    Geothermal lends itself to large and commercial-scale plant operations as well as local and residential applications in the form of ground pump heating and cooling systems. Smaller operations are cheaper and can be dug at shallower levels, while large geothermal power plants can efficiently convert huge amounts of heat into electricity to feed the grid.

    BASE LOAD STABILITY
    Unlike renewables such as solar and wind power, geothermal energy maintains an ideal stability night and day, regardless of lighting and wind conditions. That makes it eligible to supply base load electricity to the grid.

    The base load forms the primary bulk of demand for a grid’s electricity. A reliable and constant supply of power is required to meet this demand. Geothermal’s inherent stability also carries over to the price of electricity, which would see less cost fluctuation.

    ReplyDelete
  6. LIGHT ON CARBON
    A geothermal system is an excellent way to substantially reduce a building’s carbon footprint. Zoe Reich, an environmental specialist with engineering firm Edwards & Zuck, says a correctly installed geothermal pump system can shave a building’s utility costs by up to 60 percent.

    While geothermal energy is not entirely carbon-free, it releases a fraction as much carbon dioxide into the atmosphere as fossil fuels. Additionally, power is generated on-site at geothermal plants, saving the costly energy associated with transporting and processing pricey fuels.

    LOW-MAINTENANCE VERSATILITY
    Geothermal energy can replace both heating and cooling systems in buildings—and do both jobs more efficiently than conventional air-cooled systems. Why? Subsurface temperatures remain constant year-round.

    Moreover, the elegant operational simplicity of a typical system and the absence of carbon fouling due to combustion mean geothermal systems are easy to maintain.

    SMART LAND USE
    Geothermal energy has the smallest land footprint of any major power source. It doesn’t require much additional real estate—a boon in dense urban zones.

    Additionally, underground geothermal systems aren’t exposed to the elements. This is important during extreme weather as it protects crucial energy supplies from natural disasters that threaten aboveground units.

    GREEN ECONOMY
    The uncapped energy potential of hydrothermal reservoirs means there will never be anything like ‘peak geothermal.’ This has serious implications for job creation and the strength of the green economy.

    It takes a lot of workers to build and run geothermal power plants. Each phase of development represents valuable jobs for electricians, pipefitters, engineers, recruits from top geology programs, and more.

    ReplyDelete
  7. LIGHT ON CARBON
    A geothermal system is an excellent way to substantially reduce a building’s carbon footprint. Zoe Reich, an environmental specialist with engineering firm Edwards & Zuck, says a correctly installed geothermal pump system can shave a building’s utility costs by up to 60 percent.

    While geothermal energy is not entirely carbon-free, it releases a fraction as much carbon dioxide into the atmosphere as fossil fuels. Additionally, power is generated on-site at geothermal plants, saving the costly energy associated with transporting and processing pricey fuels.

    LOW-MAINTENANCE VERSATILITY
    Geothermal energy can replace both heating and cooling systems in buildings—and do both jobs more efficiently than conventional air-cooled systems. Why? Subsurface temperatures remain constant year-round.

    Moreover, the elegant operational simplicity of a typical system and the absence of carbon fouling due to combustion mean geothermal systems are easy to maintain.

    SMART LAND USE
    Geothermal energy has the smallest land footprint of any major power source. It doesn’t require much additional real estate—a boon in dense urban zones.

    Additionally, underground geothermal systems aren’t exposed to the elements. This is important during extreme weather as it protects crucial energy supplies from natural disasters that threaten aboveground units.

    GREEN ECONOMY
    The uncapped energy potential of hydrothermal reservoirs means there will never be anything like ‘peak geothermal.’ This has serious implications for job creation and the strength of the green economy.

    It takes a lot of workers to build and run geothermal power plants. Each phase of development represents valuable jobs for electricians, pipefitters, engineers, recruits from top geology programs, and more.

    ReplyDelete
  8. 100% RENEWABLE
    Geothermal power is based on heat energy stored underneath the ground. This intense heat is trapped in enormous quantities inside water reservoirs in the earth’s crust. In fact, it is considered essentially limitless.

    The superheated aquifers tapped for geothermal production are continually replenished by geologic forces originating in the core of the planet. These inexhaustible natural processes make geothermal energy an eminently renewable resource.

    CLEAN-BURNING AND LOW-EMISSION
    Geothermal energy is considered clean because it can be extracted and converted without burning any fossil fuels. The ‘emissions’ from a geothermal plant are mainly benign water vapors.

    For evidence, we can look to Iceland whose capital Reykjavik—where 95 percent of buildings are geothermally heated—is considered one of the world’s cleanest cities.

    HIGH ENERGY POTENTIAL
    Oil and other ‘fossil’ fuels are just that—finite fossils that took a long time to form millions of years ago. As a result, there is only so much valuable oil we can extract from identified reserves. At some point, it could simply become cost-ineffective to drill for what’s left of the world’s petroleum—not to mention prohibitively destructive of the global climate.

    Geothermal resources have astonishing energy potential by comparison, estimated at 2 terawatts globally—about 15,000 times more than estimated worldwide oil reserves.

    SCALABLE PRODUCTION
    Some level of geothermal energy is available in most places. There is potential for geothermal development throughout the United States, and the process is highly scalable.

    Geothermal lends itself to large and commercial-scale plant operations as well as local and residential applications in the form of ground pump heating and cooling systems. Smaller operations are cheaper and can be dug at shallower levels, while large geothermal power plants can efficiently convert huge amounts of heat into electricity to feed the grid.

    BASE LOAD STABILITY
    Unlike renewables such as solar and wind power, geothermal energy maintains an ideal stability night and day, regardless of lighting and wind conditions. That makes it eligible to supply base load electricity to the grid.

    The base load forms the primary bulk of demand for a grid’s electricity. A reliable and constant supply of power is required to meet this demand. Geothermal’s inherent stability also carries over to the price of electricity, which would see less cost fluctuation.

    ReplyDelete
  9. Istraživanje geotermalnih izvora energije u Međimurskoj, Koprivničko-križevačkoj, Virovitičko-podravskoj i Osječko-baranjskoj županiji u investiciji ukupne vrijednosti 400 milijuna eura, moglo bi započeti sredinom 2025., doznaje se u Agenciji za ugljikovodike (AZU).

    - Investitori prvo moraju ishoditi lokacijsku dozvolu, u proceduri koja traje između tri i četiri mjeseca, zatim slijede izrada studije utjecaja na okoliš te nabava opreme za istraživačke bušotine. Za nabavu opreme potrebno je između devet mjeseci i godine dana – pojašnjavaju u AZU. Spomenuti rokovi, ističu, nisu hrvatska specifičnost, kao ni, dodaju, predviđeno vrijeme bušenja koje obično traje 60 dana.

    Koncesije za istraživanje geotermalnih izvora energije početkom tekućeg mjesesa dobili su, podsjetimo, INA, ‘IgeoPen‘, iza kojeg stoji britanski ‘Star Energy Group‘ te ‘Viola Energy Generation‘ u vlasništvu turske korporacije ‘Soyak‘ koja je prije dvije godine već ishodila koncesiju za istraživanje geotermalnih izvora u općini Legrad u Koprivničko-križevačkoj županiji. Najveći interes ulagača, prema podacima AZU, zabilježen je za istražno polje ‘Lešćan‘ u Koprivničko-križevačkoj županiji koje je dobila INA ponudivši 91 milijun eura i instaliranje čak osam istražnih bušotina.

    - Koncesionar je u obvezi instalirati svih osam bušotina za vrijeme trajanje koncesija, koja je izdana na pet godina. S druge strane, dosadašnja praksa koncesionara je da na jednoj ili više bušotina, u slučaju pozitivnog ishoda bušenja na njima, počne s eksploatacijom još za vrijeme dozvole za istraživanje, odnosno i prije nego što instalira sve bušotine – pojašnjavaju u Agenciji.

    Istražno polje ‘Lešćan‘ povuklo je uvjerljivo najveću investiciju među šest istražnih polja koje je Ministarstvo gospodarstva i održivog razvoja ponudilo u ovom krugu davanja u koncesiju istraživanja geotermalnih izvora energije. Na istražnom polju ‘Pčelić‘ u Virovitičko-podravskoj županiji, koje je dobio ‘IgeoPen‘, biti će izgrađene tri bušotine i investirano 27 milijuna eura. Ista tvrtka dobila je i polje ‘Sječe‘ u Osječko-baranjskoj županiji ponudivši ulaganje u četiri bušotine ukupne vrijednosti 20 milijuna eura.

    Osim ‘Lešćana‘, INA će istraživati izvore geotermalne energije i na polju ‘Međimurje 5‘, gdje se obvezala na četiri bušotine i ulaganje od 27 milijuna eura. Peto istražno polje koje je privuklo interes ulagača je ‘Kotoriba‘ u Međimurskoj županiji koje je dobila ‘Viola Energy Generation‘ ponudivši 25 milijuna eura i izgradnju dvije bušotine.

    - Ukupno je 11 tvrtki s 16 ponuda sudjelovalo u natjecanju za koncesije, a jedino polje za koje nije bilo interesa je ‘Ferdinandovac‘ u Virovitičko-podravskoj županiji – navode u AZU.

    ReplyDelete
  10. Kada je u pitanju najavljeni iznos investicija u geotermalne izvore, razliku između 190 milijuna eura koliko će biti uloženo u istraživanje i 400 milijuna eura koliko je najavljeni ukupni iznos investicija, čini ulaganje u postrojenja iznad izvora poput elektrana, ako, naravno, bude pronađena geotermalna energija.

    - Na pet lokacija za koje smo početkom listopada izdali koncesije moći će se ostvariti godišnja proizvodnja električne energije od 600 tisuća megavatsati električne energije što je dostatno za opskrbu oko 200 tisuća kućanstava – ističe ministar gospodarstva i održivog razvoja Davor Filipović, ocjenjujući kako koncesioniranje spomenutih geotermalnih izvora ide po značaju za energetsku sliku države u rang s proširenjem LNG Terminala na Krku.

    Direktor AZU Marijan Krpan ističe kako se temeljem baze podataka koje Agencija ima o geotermalnim potencijalima države može govoriti o 43 lokacije s mogućim nalazištima za proizvodnju toplinske i 32 lokacije za proizvodnju električne energije.

    - Kada govorimo o interesu investitora za naše geotermalne potencijale, tvrtke koje na netom zaključenom natječaju nisu dobile istražna polja zainteresirane su za eventualne buduće lokacije i mi o tome vodimo računa u planiranju preliminarnih istraživanja o geotermalnim izvorima – napominje Krpan.

    Spomenuta preliminarna istraživanja AZU o geotermalnim izvorima biti će, kako doznajemo, sprovedena na području Velike Gorice, odnosno naselja Lomnica i Odra, te u okolini Osijeka. Još su četiri lokacije razmatrane za preliminarna istraživanja AZU, riječ je o Sisku, Vinkovcima, Zaprešiću i Vukovaru.

    Uključujući pet spomenutih istražnih polja danih u koncesije INA-i, ‘IgeoPenu‘ i ‘Violi‘, ukupno je trenutno u Hrvatskoj 28 istražnih polja za geotermalne izvore. Grijanje velikih naselja iz geotermalnih izvora, ističu u AZU, je budućnost jer je, među ostalim, iskoristivost energije dobijene iz ‘geotermi‘ preko 90 posto.

    ReplyDelete